Does it matter whether students enjoy learning science? Exploring student attitudes towards science in South Africa

Overview
Attitudes towards science are seen as key components of an individual's scientific literacy but are often overlooked in favour of achievement scores. While achievement scores convey levels of problem-solving skills and intelligence, attitudes convey the emotional evaluations of science and have a powerful influence on behaviour, either facilitating or hindering the learning process. The 2011 Trends in International Mathematics and Science Study (TIMSS) was used to investigate four broad categories of attitudes: value of science, enjoyment of science, confidence in ability to learn science (self-efficacy), and physiological states experienced when engaging in science tasks (anxiety, stress or excitement). The findings indicate that (i) South African students' enjoyment and value of science were far higher than the international average; (ii) students with positive attitudes towards science tend to engage in desirable science behaviours, e.g. reading about science; (iii) positive experiences in the science classroom are linked to positive attitudes expressed by students; and (iv) girls tend to have less positive attitudes towards science than boys do, even when they achieve results that are at the same level as those of boys.

Introduction
As science and technology have become deeply embedded in our everyday lives, the way in which ordinary people perceive science has been researched not only by the scientific community but also by social scientists. The assumption is that a positive relationship between the public on the one hand and science and technology on the other can support economic, personal and social development as well as assist in consolidating democracy and citizenship.

Scientific issues such as medical advances, environmental sustainability, ozone depletion, deforestation and climate change require a society that is engaged with science. There is thus a pressing need to improve scientific literacy across all groups within society. School science experiences play an important role in shaping people's attitudes towards both school science and science-related topics outside of school. Attitudes formed early in life may influence the relationships that adults have with science in general. The importance of the relationship between the South African public and science has increasingly been recognised by policy-makers. Thus, policies have been implemented that stimulate interest and participation in science subjects and careers; encourage investment in research and development; and increase public participation in science policy formulation and adoption.

The South African context
In 2013, the South African Social Attitudes Survey found that, in general, South Africans expressed positive attitudes about science (Figure 1). However, the statements that measured attitudes about the benefits of science showed a general decrease from the previous study conducted in 1999. This may indicate that the public is becoming increasingly cautious about the relevance of science and technology. This finding was echoed in responses to statements that reflected concerns about the role of science. The South African public seems to have become more critical about the impact of science. These attitudinal changes have important implications for the public's relationship with science.

The 2013 survey also asked respondents about their attitudes towards science as a school subject (Figure 2). Forty-one per cent of South Africans did not feel that the science learnt at school was useful in their daily lives, while 30% felt that it had no value in their jobs. This may indicate that people do not understand, or are not made aware of,
the association between the science they learnt at school and their everyday experiences, or that the science taught at school seems disconnected from daily life. It is therefore crucial to ensure that positive school science experiences are provided to promote a public that is more engaged with science and technology.

Why student attitudes matter in South Africa

Many governments and societies are concerned that not enough young people are choosing to study science, technology, engineering and mathematics (STEM) in secondary school. In South Africa, there is the added concern that women and black South Africans remain under-represented in STEM fields in the labour market. Projections of skills gaps in STEM fields may negatively impact economic development in the future. Thus, a significant amount of research in science education is devoted to understanding ways to improve the quality of science education, with a view to increasing enrolments in science-related post-school studies. Understanding how attitudes are shaped and the behaviours to which they are linked may prove useful in science education in South Africa.

Positive attitudes about science are seen as crucial in terms of an individual's scientific literacy. Attitudes towards science also reflect the school culture and climate, and the wider social context in which learning occurs. As such, understanding attitudes is a key element of interpreting achievement results.

Having a positive attitude towards science is a desirable outcome in and of itself, but positive attitudes are also associated with science-related behaviours at school and once schooling has been completed. Students' commitment and motivation to learn science can be affected by whether they find the subject enjoyable; whether they attach value to the subject in terms of its usefulness to themselves and society; and by their self-confidence in their ability to perform specific activities or accomplish science-related tasks (self-efficacy). The decision to pursue science beyond the compulsory stage of education is influenced by the usefulness and relevance of science to students, and by the value attached to the subject. Therefore, those students who highly value science are more likely to continue to study science further. Highly valued subjects also lead to high educational aspirations and to improved achievement.5
Assessing the attitudes of South African students

The 2011 TIMSS measured attitudes towards science through numerous items in a student questionnaire. Students were asked to rate their level of agreement with statements related to the value that they attached to mathematics and science; their level of self-efficacy in their ability to learn science; their motivation to participate in activities purely out of interest and enjoyment; and whether they were motivated to study mathematics and science in order to achieve external goals such as better career choices in the future.

These indicators were grouped into four broad categories: value of science; enjoyment of science; confidence in ability to learn science (self-efficacy); and physiological states experienced when engaging in science tasks (anxiety, stress or excitement). As shown in Figure 3, South African students’ enjoyment and value of science were higher than the international average. In contrast, self-efficacy in science was lower than the global average. The percentage of South African students who reportedly experienced positive physiological reactions to science such as excitement and a lack of anxiety were similar to the international average.

The outcome of having a positive or negative attitude towards science is exhibited in behaviours such as spending more time learning or taking science subjects in later years at school. The factors that shape attitudes present opportunities for developing interventions to change negative attitudes, which may in turn change the manner in which science is learnt.

Attitudes are shaped by both personal and observed experiences. Factors such as gender, the home environment and curriculum delivery may shape student attitudes. Some of the factors associated with the formation and shaping of attitudes were explored. The results of this exploration are summarised below.

Findings

Students with positive attitudes towards science tend to engage in desirable science behaviours

Students were asked whether they read about science in their spare time. This behaviour indicates an engagement with science beyond what is mandatory during school lessons. Those students who enjoyed science were 21% more likely to read about science when outside school. Similar patterns were found for those who valued science and expressed high self-efficacy. These patterns held even after other student background factors, including gender and socioeconomic status, were considered.

Students need to be willing to engage with science problems and be open to new challenges in order to be able to master the subject. Proficiency in science requires a mix of content knowledge and willingness to engage with new material. TIMSS measures students’ openness to problem-solving through their responses to questions about the extent to which they feel they can solve complex scientific problems. It was found that students who had a strong belief that they could succeed in science tasks were more than four times more likely to attempt these activities than students who were not confident in their science ability. It is not clear from this finding whether students with greater self-belief achieve higher scores irrespective of the level of difficulty of the task presented, or whether positive experiences about problem-solving lead to higher levels of self-efficacy.

In conjunction with reading about science outside school and being open to problem-solving, science achievement was viewed as a behavioural outcome. Table 1 compares average achievement scores by grouping students into three different levels of attitude: high, medium and low. Internationally, there was a striking similarity between attitude levels and average achievement scores. In general, students with more positive attitudes on any of the three attitude indicators tended to achieve better mathematics and science scores. In South Africa, the difference in achievement results was most pronounced between the highest category and the middle and bottom categories.

Figure 3: Percentage of students exhibiting positive attitudes towards science (2011)

Source: Derived from the TIMSS 2011 database
The findings from Table 1 indicate that although students exhibited a more positive attitude in terms of valuing science, this did not translate into better science achievement. This may be because both weak and strong students share similar views about science. Self-efficacy was found to be positively associated with achievement. Higher levels of enjoyment, which had the highest association with science achievement, and self-efficacy may therefore translate into more effort being put into learning and understanding school science (see Table 2).

Students who are positive about science tend to have parents who show interest in their science homework

The relationship between these factors and attitudes towards science was explored. Students were asked how often certain activities took place at home. These activities included parents wanting to know what was learnt at school, parents checking homework and parents ensuring that time was set aside for homework. The responses reflected the different levels of engagement between parents and students. In general, participating in these activities was found to be positively associated with the expression of positive attitudes by students. This relationship remained even when factors such as science achievement, socioeconomic status and gender were taken into account (see Table 3).

The measure of socioeconomic status was based on the number of books within the home, educational study supports (such as a desk and internet connection), as well as parental educational levels. Higher socioeconomic status was related to more positive attitudes about scientific material. This finding suggests that the additional resources which wealthier students can draw upon encourage more positive views about science.

Students who report positive classroom interactions with their teachers are more optimistic about science

Classroom interactions between students and teachers were assessed by examining instructional practices. Positive teacher-directed instruction involves explicitly teaching scientific rules, concepts, principles and problem-solving strategies. This often includes modelling a variety of examples and guiding students during their review and practice. If students do not have a clear understanding of how a task will look when it is completed, their efforts to complete the task will often be ineffective. Students rated their agreement with the following
students: ‘I know what my teacher expects me to do,’ ‘My teacher is easy to understand’ and ‘I am interested in what my teacher says.’

Feedback from teachers clarifies areas where a student is doing well but may also show how far a student must improve. This is a form of social persuasion. It refers to judgments that teachers make regarding the capabilities of the student. Positive persuasions build stronger beliefs in capabilities and in the successful attainment of goals. Students rated their agreement with the following statements: ‘My teacher tells me I am good at science’ and ‘My teacher thinks I can do well in science with difficult materials.’

All five items relating to classroom practices were combined into a single indicator of classroom experiences. The findings indicate that positive classroom interactions are associated with positive attitudes across the attitudinal measures (see Table 4).

Boys tend to exhibit more positive attitudes towards science than do girls

The commonly held view is that doing science is more consistent with a male self-image than with a female one. We examined whether this gender-related image of science impacted the attitudes students expressed towards science. When controlling for factors such as science achievement, socioeconomic status and school experiences, girls were still less likely than boys to value science and have confidence in their ability to learn science (see Table 3). These findings echo results from Organization for Economic Cooperation and Development (OECD) countries in the 2012 Programme for International Student Assessment (PISA) study, where girls who performed on par with boys were found to exhibit higher levels of anxiety and lower levels of openness to problem-solving.

Recommendations

A number of things can be done to foster positive attitudes towards science:

- Develop communication strategies at both school level and for the general public that highlight the relevance of science to our everyday lives.
- At the school level, invest in approaches that address aspects of attitudes and learning behaviours, and consider this as a goal of quality education. Schools should develop policies that highlight the crucial role teachers play in shaping attitudes towards science, and ensure that techniques are employed to foster positive attitudes.
- Particular attention must be paid to inequalities between the genders in the effectiveness with which schools and societies promote motivation and interest in science. Programmes using female role models may encourage girls to recognise that they are capable of pursuing science careers.
- Raise awareness among parents and caregivers of the importance of engaging with students about their homework and reading about science.
- Ensure that teachers use verbal persuasion and praise effort (not ability) in order to build a learner’s sense of self-efficacy.

Endnotes

3 The findings did show generational and educational-level effects, with younger and more educated respondents possessing more positive attitudes towards the science learnt at school.
4 All South African students study general science until Grade 9. In Grade 10 students can choose to continue with science subjects, including physical science and biology.

Table 4: The relationship between attitudes and science achievement (2011)

<table>
<thead>
<tr>
<th></th>
<th>Enjoyment</th>
<th>Value</th>
<th>Self-efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (Girls)</td>
<td>0</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Home socioeconomic status</td>
<td>+++</td>
<td>0</td>
<td>+++</td>
</tr>
<tr>
<td>Science achievement</td>
<td>+++</td>
<td>0</td>
<td>+++</td>
</tr>
<tr>
<td>Classroom experiences</td>
<td>+++</td>
<td>+++</td>
<td></td>
</tr>
</tbody>
</table>

Source: Derived from the TIMSS 2011 database
Note: ++++,−−−−− p ≤ 0.01; ++,−− p ≤ 0.05; 0 p ≥ 0.05

POLICY BRIEF AUTHORS
Andrea Juan, PhD; Postdoctoral Fellow and Research Specialist in the Education and Skills Development (ESD) Research Programme, HSRC
Vijay Reddy, PhD; Executive Director in the ESD Research Programme, HSRC
Tia Linda Zuze, PhD; Senior Research Specialist in the ESD Research Programme, HSRC
Catherine Namome, MSc; PhD intern in the ESD Research Programme, HSRC
Sylvia Hannan, MSc; Junior Researcher in the ESD Research Programme, HSRC

Enquiries to:
Dr Andrea Juan: ajuan@hsrc.ac.za